Lanthanide Nitrates as Effective Promoters of a Ru/Al_2O_3 Catalyst for Ammonia Synthesis

Shuzo MURATA, Ken-ichi AIKA,* and Takaharu ONISHI
Research Laboratory of Resources Utilization, Tokyo Institute of
Technology, 4259 Nagatsuta, Midori-ku, Yokohama 227

Nitrates of La, Ce, and Sm were proved to be better promoters than $CsNO_3$ for an ammonia synthesis Ru/Al_2O_3 catalyst. A small amount of lanthanide nitrate (M/Ru = 1) was as effective as a large amount of $CsNO_3$ (Cs/Ru = 10) for 2wt Ru/Al_2O_3 prepared from $Ru_3(CO)_{12}$.

Ruthenium is known to be quite sensitive to a support and a promoter when it is used for ammonia synthesis. 1,2 Roughly speaking, the effectiveness of promoter is inversely related with the electronegativity of "compound" (Cs < K < Na < CsOH < KOH < NaOH). $^{1-3}$ In this sense, none of La $_2$ O $_3$, Ce $_2$ O $_3$, and Sm $_2$ O $_3$ has been expected to be an effective promoter. Here, such a lanthanide was also found to be a quite effective promoter on a Ru/Al $_2$ O $_3$ catalyst.

 γ -Al $_2$ O $_3$ (Catal. Soc. Jap., JRC-ALO-4; 180 m 2 g $^{-1}$) which was baked at 773 K was impregnated with Ru $_3$ (CO) $_{12}$ (Aldrich) in tetrahydrofurane. After evaporated and dried, a sample was heated in vacuo to remove CO at 623 K for 2 h. The sample corresponding to one gram of 2 wt% Ru/Al $_2$ O $_3$ was transferred to aqueous solution of a lanthanide nitrate. The dried sample was treated with H $_2$ at 623 K for 4 h. A rate of ammonia synthesis was measured using a flow system with a flow rate of 60 ml min $^{-1}$ (N $_2$ + 3H $_2$). H $_2$ chemisorption (273 K) and XPS spectra (ESCA-750) were also measured.

Rates of ammonia synthesis at 588 K over 2 wt% Ru/Al_2O_3 catalysts with various promoter nitrates are shown as a function of promoter(M)/Ru mole ratio in Fig. 1. The activity increased gradually with an addition of Cs⁺ up to Cs/Ru = 10. On the other hand, a small amount of La^{3+} , Ce^{3+} , and Sm^{3+} increased the activity. They are most effective with 1 to 3 mole ratio of M/Ru. The catalyst with even 1 mole ratio of M/Ru is as active as that with 10 mole ratio of Cs/Ru. $CsNO_3$ has been discussed to be decomposed to Cs_2O and/or CsOH by the presence of $Ru.^{2}$ It is suggested that the lanthanide nitrates are also decomposed to the oxides over Ru

surface and migrate to the support Al_2O_3 , while some of them may stay on the Ru surface or the Ru-support boundary. XPS spectra of the used catalysts disclosed that the $3d_{5/2}$ binding energies of the lanthanides were identical to those of the reference lanthanide oxides (3+). An activity of 2 wt% Ru-Sm³⁺/ Al_2O_3 (Sm/Ru = 3) was constant for 100 h at 603 K.

 $\rm H_2$ adsorption was measured for various $\rm Ru/Al_2O_3$ catalysts and compared with the promoter content. The value $\rm H(a)/Ru$ is drastically decreased from 0.59 to 0.57 and 0.18 when $\rm Sm/Ru$ ratio is increased from 0 to 3.0 and 10.0. On the other hand, the values are 0.59, 0.59, and 0.45 when $\rm Cs/Ru$ ratios are 0, 3.0, and 10.1. This means that the hindrance of $\rm Ru$ surface by $\rm Sm^{3+}$ is more serious than that by $\rm Cs^{+}$. It is suggested that $\rm Cs_2O$ and/or $\rm CsOH$ which is produced through a hydrogenolysis of $\rm CsNO_3$ at the $\rm Ru$ surface moves easily to the $\rm Al_2O_3$ surface and the $\rm Cs_2O$ and/or $\rm CsOH$ reacts with acidic centers on the $\rm Al_2O_3$ surface. Thus, the $\rm Cs^{+}$ ions stay less on the $\rm Ru$ surface. However, lanthanides are not movable and stay much on the $\rm Ru$ surface or the $\rm Ru$ -support boundary. Melting points of $\rm La_2O_3$ (2588 K), $\rm Ce_2O_3$ (1965 K), and $\rm Sm_2O_3$ (2573 \pm 50 K) are higher than that of CsOH (545 K), which could be another reason.

The earlier studies concluded that an electron donation to ${\tt Ru}$ surface from a support or a promoter was generally most important for an activation

of N₂ over Ru surface. Since a lanthanide oxide is not a stronger base than an alkali metal oxide, the effectiveness of a lanthanide oxide as a promoter has not been expected. We need further studies to clarify the state of lanthanide promoters during the reaction.

References

- K. Aika, H. Hori, and A. Ozaki, J. Catal., <u>27</u>, 424 (1972).
- K. Aika, Y. Shimazaki, A. Hattori,
 S. Ohya, K. Shirota, and A. Ozaki,
 J. Catal., <u>92</u>, 296 (1985).
- 3) K. Aika, A. Ohya, A. Ozaki, Y. Inoue, and I. Yasumori, J. Catal., 92, 305 (1985).

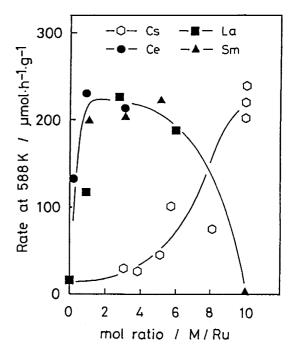


Fig. 1. Rates of ammonia synthesis at 588 K over a promoted 2 wt% Ru/Al_2O_3 catalyst as a function of promoter(M)/Ru mole ratio.

(Received March 17, 1990)